
Test 2

 Summer 2011 Test 2 Take Home
CSE1320 Section 001
Thursday, July 21, 2011 Dr. Tiernan

Name: Section: 001
Student ID: 1000

This test is due BY E-MAIL to Dr. Tiernan (tiernan@uta.edu) no later than

 11:59pm Saturday, July 23, 2011

No late tests accepted.

If the UTA network is down and you cannot submit your lab on time, call 817-272-0113 to leave Dr. T a message regarding your lack of network access. Turn your test in as soon as possible and mention the problem in the test e-mail. Dr. T will then check with OIT to verify service outage. If OIT reports no service problems, the late test will NOT be accepted.

Five minutes late is still late. Do NOT turn your test in late. It will not be graded if the e-mail time stamp is later than 11:59pm.

Read These Instructions!

1. Fill in your name and the rest of your ten-digit student ID above.

2.
Submit your test in this same format with the same font as you received it by e-mail or by download.

3. The test is worth a total of 100 points. The value for each question is given either at the top of that section of questions or in curly braces to the right hand side of the question. There are extra credit questions at the end of the test worth an additional 10 points total.

4. If you do not understand a question, you may e-mail Dr. T about that issue. However, Dr. T does not guarantee that she will be able to respond to your question before the test is due. Make a reasonable assumption, indicate what assumption you made, then answer the question as best you can.

5.
This test will have code based questions, short answer, research, and essay type questions. The instructions regarding code questions are given with each question. You will be expected to include the code you wrote as part of this exam file document, not as a separate file document.

6. I will always try to give partial credit so the more of your work that you show, the more I am able to grade for partial credit if the answer is not entirely correct. It is to your benefit to show your work on the test. Partial work also includes answering part of the question but not all of it.

7. Don’t get stuck on a question. If you don’t know what to do after thinking about it for a minute and a half, then go on to another question or raise your hand and ask something. You can always go back to questions you skip.

NO CHEATING!
1.
Take the code below and make it work correctly. You should code, compile, and test your program to make sure it works before you turn in your test. Your exam should be turned in with the corrected program listed underneath this given program and the questions answered below.

#include “stdio.h”

// This is the given program

int main(void)

{
float tmp1, tmp2, tmp3;

print(“Please enter the starting and ending values for the summation.”);

scan(“%f %f”, &tmp1, &tmp2);

tmp3 = summa(tmp1, tmp2)

print(“Starting value was %d, ending value was %d, summation is %d”, temp1, temp2, temp3);

}

int summa(int start, int end)

{
if (start <= end)

return start + end + summa(star++, end--);

else

return (start == end)? start : 0;

}

1.a.
Correct the code and make it work properly.
{10}

//////////////// Copy your working C program for 1.a. below here /////////////////////

1.b.
List all the changes you made from the original program and why you made them.
{16}

1.c.
Rewrite the recursive function call in main in 1.a. as iteration in main, i.e. remove the function. {10}

//////////////// Copy your working C program for 1.c. below here /////////////////////

Use any available resource, including the web, to find answers for the following. Include your complete source references in your answer so that Dr. T could find the exact source document. Wikipedia is NOT considered a source so any reference to Wikipedia as a source will be ignored. Your answer will be graded for the correctness, the completeness, and the sources used among other things.

2.
Find a programming language that implements DIFFERENT scope choices than C does, i.e. it should not have only local and global scope. List the language, document the specific choices the language has, describe each scope choice in your own words (ex. if a language has only local scope and nothing else, list that and describe local scope), then document the source of your information.
{12}

3.
Find at least two ADTs that we have not discussed in class. Give the names of the ADTs, describe the two major aspects of each ADT, give your source, and discuss one way you might physically implement this ADT in the C programming language. This should be a description in words not code.
{16}

4.
Excluding searching, sorting, factorial, and Fibonacci functions, find a useful recursive function that is close in efficiency to the same algorithm implemented with iteration, i.e. find a useful algorithm implemented recursively and in a loop where the recursion is close to (or better than) the loop in efficiency. Name and describe the algorithm that is being implemented, tell why this algorithm is useful, give at least two reasons why the recursion has similar efficiency, and give your source for the two versions of the algorithm and for the analysis of the efficiency.
{10}

5.
Write a small program to meet the following requirements. You should code, compile, and test your program to make sure it works before you turn in your test. Programs will be graded and tested by Dr. T.

{26}

Requirement 1: Implement a program that will read a set of money deposit amounts from a text file representing deposits for one day.

Requirement 2: The money amounts should be handled as follows:

Req. 2a: Amounts over $2000.00 will be individually “deposited” by being stored in a linked list of deposits stored in the order they are “received”, i.e. read in.

Req. 2b: Amounts between $500.00 and $1999.99 should be saved in a separate small deposit array.

Req. 2c: Amounts less that $500.00 should be added to a daily total deposit amount and for each $500 or less deposit, a counter should be incremented.

Req. 3:
The program should keep a running tally of deposits.

Req. 4:
After any deposit is entered from the file, the user should be able to tell the program that the deposit system is “closing” for the day and after that occurs the program should not read the next item (or any more items) from the file.

Req. 5:
At the end of the day, i.e. after “closing”, the program should print out all the currently held deposit info and a tally of the deposit total.

Req. 6:
There is no maximum numbers of deposit amounts in the file.

Req. 7:
Deposits should be non-negative amounts.

Req. 8:
The file has one single amount on each line.

Req. 9:
The maximum number of deposits in the file that are over $500 and not over $2K is MAX2K.

Req. 10
The program should read the whole file unless the program “closes” for the day.

Req. 11
Deposit information should be saved for each deposit including:

Req. 11a: Deposit order starting from first deposit read in as deposit number 1

Req. 11b: Deposit amount

Req. 11c: Deposit time – this does NOT have to be implemented except that there must be space to store this information in the future when this code is modified to handle it.

Extra Credit questions:

XC1. Give at least three examples of poor C programming from the web. Give sources and explain why you think this is poor programming.

 {3}

XC2.
 Give four unrelated examples of error checking that you might use in a program such as the ones in this test and explain why you would do those error checks.
{4}
XC3.
How long did you spend on this test?

{Any answer will receive 2 points}
{2}

CSE 1320
Summer 2011
Pg. 3 of 3

